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Abstract We consider a class of evolutionary quasi-variational inequalities arising in the
study of some network equilibrium problems. First we prove the existence and uniqueness of
solutions and, subsequently, present a differentiability result based on projection arguments.
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1 Introduction

We are concerned with existence and solution differentiability issues for a class of infinite-
dimensional quasi-variational inequalities which describe network equilibrium problems in
several different fields, ranging from financial markets [19] to transportation networks [2,18]
(see also [5,10] for a discussion on the variational inequality formulation of some equilibrium
problems). In particular, we prove that the solution to the following abstract problem belongs
to H1(0, T ; R

n):
Find x(t) ∈ K (x) which satisfies

∫ T

0
〈F(t, x(t)), y(t)− x(t)〉 dt ≥ 0, ∀y(t) ∈ K (x), (1)

where F : [0, T ] × R
n → R

n is a point-to-point map, K : E → 2L2([0,T ];Rn+) is a point-to-
set map with closed and convex values, E is a nonempty, compact, and convex subset of
L2([0, T ]; R

n+) and 〈·, ·〉 denotes the scalar product in R
n .

There is a vast literature on the theory of quasi-variational inequalities. It will be beyond
the scope of this paper to give a survey of all relevant results. However, we address the inter-
ested reader to the comprehensive monograph [1] and references therein. For a discussion
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of various conditions ensuring nonemptiness of the solution set of some evolutionary quasi-
variational inequality problems we refer to [4,18,19].

Solution regularity has always raised the attention of numerous scholars, see for exam-
ple the seminal works [6,16] in the context of nonlinear programming and [7,8,20] in the
framework of variational inequalities. Recently, there has been a sharp increase in interest in
sensitivity analysis and solution differentiability for variational inequality problems, as also
confirmed by the numerous results in the literature, see for instance the monograph [11] and
the papers [9,14,15,17,21,23]. Thus, regularity properties appear as central in applications
and, in particular, in equilibrium problems. In fact, they allow us to have a complete knowl-
edge of the solution behavior during the time horizon, and hence to describe exhaustively all
the features of the model. Nevertheless, from this point of view, quasi-variational inequalities
do not have an extensive literature. This is one of the motivations for the present research.

We aim at advancing the understanding of solution behavior in two directions. First, we
explicitly take into account the dependence on time of the constraint set. In most of evo-
lutionary models constraint sets are not considered as time-varying, this means that we are
able to study the evolution in time of solutions, but we do not have a global time-specific
description of the constraint sets. Our aim is to fill this gap by dealing with a time-dependent
constraint set, i.e., K (x) = K (x(t)). Thus, we extend the approach examined in [9] for a
variational inequality problem and show how the structure of the convex set K (x(t)) plays
a central role and allows us to achieve fundamental solution properties. Our results were
inspired by [21–23] where regularity properties of solutions to some parameterized varia-
tional inequality problems are studied. In [21] continuity and differentiability of solutions are
discussed for variational inequalities under operator perturbation; in [22] a time-dependent
convex set characterized by a zero obstacle is considered and regularity properties are derived
for a variational inequality problem with integral term; in [23] a Hölder stability result is
proved for variational inequalities with pseudo-Lipschitz parameter-dependent sets. In view
of practical applications, we present a general parameter-dependent constraint set which is
able encompass numerous real-life problems, ranging from transportation to economics and
finance.

Second, we suggest to exploit geometric properties of constraint sets K (x(t)) and prove
that projection arguments can be fruitfully applied to the end of proving the existence of
solution derivatives and estimating their norms. Moreover, it worth noting that we obtain
our result under mild and reasonable assumptions which often appear in equilibrium model
descriptions. Our regularity result is of general and independent interest and it makes it pos-
sible to understand and predict choice adjustment processes of users. Moreover, it applies to
all network-based models which can be cast in the form of Problem 2 (see next section) and
hence has a large spectrum of possible applications.

The paper is organized as follows. In Sect. 2 the theoretical framework is presented and
some basic arguments are given. Section 3 provides an existence and uniqueness result for
infinite-dimensional quasi-variational inequalities. Section 4 is devoted to our main theorem
on solution differentiability and, finally, Sect. 5 draws conclusions and suggests some further
research issues.

2 Notations and preliminaries

Before introducing the formulation of our problem we specify our notations. For technical
reasons we choose as our functional setting the Hilbert space L2([0, T ]; R

n), T > 0, of
square-integrable functions from the closed interval [0, T ] to R

n endowed with the scalar
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product 〈·, ·〉L2 = ∫ T
0 〈·, ·〉dt and the usual associated norm ‖ · ‖L2 . The scalar product in

R
n is denoted by 〈·, ·〉 and the norm by ‖ · ‖. We adopt the usual notation H1(0, T ; R

n)

for the space of absolutely continuous functions y: (0, T ) → R
n with d y

dt
∈ L2(0, T ; R

n).
Moreover, we denote by PA(·): R

n → A the projection operator for any closed and convex
subset A ⊂ R

n .
We now introduce the problem of our interest:

Find x(t) ∈ K (x): 〈F(t, x(t)), y(t)− x(t)〉L2 ≥ 0, ∀y(t) ∈ K (x), (2)

where

• K : E → 2L2([0,T ];Rn+), with E nonempty, compact, and convex subset of L2([0, T ]; R
n+),

is a point-to-set map defined by

K (x) =
{

y ∈ L2([0, T ]; R
n): y

i
(t) ≤ yi (t) ≤ yi (t) a.e. t ∈ [0, T ],

i = 1, . . . , n;
n∑

i=1

ξi j yi (t) = d j (t, x(t)) a.e. t ∈ [0, T ],

ξi j ∈ {0, 1}, i = 1, . . . , n; j = 1, . . . , l
}
; (3)

• y(t), y(t) ∈ L2([0, T ]; R
n), 0 ≤ y(t) ≤ y(t);

• d: [0, T ] × R
n → R

l and F : [0, T ] × R
n → R

n .

In order to ensure the nonemptiness of the constraint set K (x), we also assume that�y(t) ≤
d(t, x(t)) ≤ �y(t) a.e in [0, T ], where � is the matrix with typical entry ξi j , i = 1, . . . , n,
j = 1, . . . , l. General formulation (3) comprehends some common quasi-equilibrium prob-
lems. For instance, if ξi j ∈ {0, 1} and y(t) ≥ 0 the set (3) represents the constraint set
of traffic equilibrium problems with congestion-dependent travel demands (see [18]) and if
ξi j ∈ {0, 1}, y(t) large enough and y(t) = 0 it describes the financial equilibrium problem
with implicit budget constraints (see [19]).

Remark 1 We observe that problem (2) is equivalent to the following one (see [5,10])

Find x(t) ∈ K (x): 〈F(t, x(t)), y(t)− x(t)〉 ≥ 0, ∀y(t) ∈ K (x) a.e. in [0, T ]. (4)

Now, let us recall a result which will be useful for our purposes. Let p′ be the conjugate of
p, let C∞

c (I ) be the set of continuous functions with compact support in the interval I and
infinitely differentiable, and let �A denote the complement of any set A.

Theorem 1 (See [3]) Let I be an open subset of R. If y ∈ L p(I ), with 1 < p < ∞, the
following properties are equivalent:

1. y ∈ W 1,p(I );
2. there exists γ > 0 such that

∣∣∣
∫

I
yφ′

∣∣∣ ≤ γ ‖φ′‖L p′
(I ), ∀φ ∈ C∞

c (I );

3. there exists γ > 0 such that for any open setω ⊂⊂ I and h ∈ R with |h| < dist : (ω, �I )
∥∥∥ y(t + h)− y(t)

h

∥∥∥
L p(ω)

≤ γ.

Moreover it is possible to choose γ = ‖y′‖L p(I ).
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3 Existence of solutions

On the lines of Theorem 9 in [13] and Theorem 6 in [12], we claim the following statement.

Theorem 2 Let the following assumptions be satisfied:

(i) F(t, y) and d(t, y) are measurable in t∀y ∈ R
n+, continuous at y for t a.e. in [0, T ]

and there exist φ,ψ ∈ L2(0, T ) such that

‖F(t, y)‖ ≤ φ(t)+ ‖y‖, ‖d(t, y)‖ ≤ ψ(t)+ ‖y‖;
(ii) F(t, y) is strongly monotone in y, i.e., there exists α > 0 such that for t a.e. in [0, T ]

〈F(t, y1)− F(t, y2), y1 − y2〉 ≥ α‖y1 − y2‖2, ∀y1, y2 ∈ R
n+;

(iii) F(t, y) is Lipschitz continuous at y, i.e., there exists β > 0 such that for t a.e. in [0, T ]
‖F(t, y1)− F(t, y2)‖ ≤ β‖y1 − y2‖, ∀y1, y2 ∈ R

n+;

(iv) there exists κ , 0 < κ < 1 −
√

1 − α2

β2 , such that ∀y1, y2 ∈ R
n+,

‖PK (y1)(z)− PK (y2)(z)‖ ≤ κ‖y1 − y2‖, ∀z ∈ R
n+.

Then, there exists a unique solution x(t) to quasi-variational inequality problem (2).

Proof We first observe that under assumption (i), if y(t) ∈ L2([0, T ]; R
n+) it results that

F(t, y(t)), d(t, y(t)) ∈ L2([0, T ]; R
n+). In addition, as F and d belong to the class of

Nemytskii operators, they are also continuous in L2.
We introduce the mapping 
: E → L2([0, T ]; R

n+) which assigns to each u ∈ E the
unique solution w(t) to the parameter-dependent variational inequality (also referred as the
variational section)

∫ T

0
〈F(t, w(t)), y(t)− w(t)〉 dt ≥ 0, ∀y(t) ∈ K (u). (5)

It immediately follows that 
(u) = w(t) = PK (u)(w(t) − λF(t, w(t))), λ > 0, and x(t)
solves (2) if and only if it is a fixed point of 
. We also introduce 
′: L2([0, T ]; R

n+) →
L2([0, T ]; R

n+) defined as 
′(v) = 
(PE (v)), which has the same fixed points as 
. We
aim to prove that 
′ is a contraction.

Let v1, v2 ∈ L2([0, T ]; R
n+) and letw1(t), w2(t) be the unique solutions to the variational

sections corresponding to the sets K (PE (v1)) and K (PE (v2)), respectively. Using (iv) and
the nonexpansivity of projection operators, we have

‖
′(v1)−
′(v2)‖ = ‖w1(t)− w2(t)‖
= ‖PK (PE (v1))(w1(t)− λF(t, w1(t)))− PK (PE (v2))(w2(t)− λF(t, w2(t)))‖
= ‖PK (PE (v1))(w1(t)− λF(t, w1(t)))− PK (PE (v1))(w2(t)− λF(t, w2(t)))

+PK (PE (v1))(w2(t)− λF(t, w2(t)))− PK (PE (v2))(w2(t)− λF(t, w2(t)))‖
≤ ‖w1(t)− w2(t)− λ(F(t, w1(t))− F(t, w2(t)))‖ + κ‖PE (v2)− PE (v1)‖.

Moreover, by (ii) and (iii) we find

‖w1(t)− w2(t)− λ(F(t, w1(t))−F(t, w2(t)))‖2 ≤
(

1 + λ2β2−2αλ
)
‖w1(t)−w2(t)‖2.
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Therefore,

‖
′(v1)−
′(v2)‖
(

1 −
√

1 + λ2β2 − 2αλ
)

≤ κ‖v1 − v2‖

and choosing λ = α/β2 and κ < 1 −
√

1 − α2

β2 , we obtain

‖
′(v1)−
′(v2)‖ ≤ δ‖v1 − v2‖
with δ = κ

1−
√

1− α2

β2

< 1. Hence 
′ is a contraction and its unique fixed point is also the

unique solution to (2).

4 Solution differentiability

In this section, we prove the existence of solution derivatives to the following time-dependent
problem

Find x(t) ∈ K (x(t)): 〈F(t, x(t)), y(t)− x(t)〉 ≥ 0, ∀y(t) ∈ K (x(t)) (6)

with

K (x(t)) =
{

y ∈ R
n : y

i
(t) ≤ yi (t) ≤ yi (t),

i = 1, . . . , n;
n∑

i=1

ξi j yi (t) = d j (t, x(t)),

ξi j ∈ {0, 1}, i = 1, . . . , n; j = 1, . . . , l
}
, t ∈ [0, T ]. (7)

Hereafter, with reference to the quantities introduced in Theorem 1, we choose I = (0, T ),
t0 ∈ I ,σ > 0, B(σ ) =]t0−σ, t0+σ [⊂ I , τ ∈ (0, 1), and B(τσ ) =]t0−τσ, t0+τσ [⊂ (0, T ).
Finally, let h ∈ R − {0}, |h| < (1 − τ)σ .

Theorem 3 Let the following assumptions hold:

(a) F(t, y) is strongly monotone in y, i.e., there exists α > 0 such that, ∀t ∈ [0, T ],
〈F(t, y1)− F(t, y2), y1 − y2〉 ≥ α‖y1 − y2‖2, ∀y1, y2 ∈ R

n;
(b) F(t, y) is Lipschitz continuous at y, i.e., there exists β > 0 such that, ∀t ∈ [0, T ],

‖F(t, y1)− F(t, y2)‖ ≤ β‖y1 − y2‖, ∀y1, y2 ∈ R
n;

(c) there exists M > 0 such that, for t1, t2 ∈ [0, T ],
‖F(t1, y)− F(t2, y)‖ ≤ M‖y‖|t1 − t2|, ∀y ∈ R

n;
(d) there exists κ satisfying 0 ≤ κ < 1 −

√
1 − α2

β2 , such that, ∀t1, t2 ∈ [0, T ],
‖PK (x(t1))(z)− PK (x(t2))(z)‖ ≤ κ‖x(t1)− x(t2)‖, ∀z ∈ R

n .

Then, the unique solution x(t) to problem (6) belongs to H1(0, T ; R
n) and for any open set

ω ⊂⊂ (0, T ) the following estimate holds

‖x ′‖2
L2(ω;Rn)

≤ γ ‖x‖2
L2(0,T ;Rn)

,

where γ = γ (α, β,M, dist (ω, �I )).
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Proof We start with reformulating quasi-variational inequality problem (6) as a classical
fixed-point problem. Therefore, we may write

x(t) = PK (x(t))(x(t)− λF(t, x(t))),

x(t + h) = PK (x(t+h))(x(t + h)− λF(t + h, x(t + h)))

with λ > 0. In order to simplify notations, we set x(t) = x , x(t +h) = xh and�x = xh − x .
Thus, we have

∥∥∥�x

h

∥∥∥2 =
∥∥∥ xh − x

h

∥∥∥2 =
∥∥∥ PK (xh)(xh − λF(t + h, xh))− PK (x)(xh − λF(t + h, xh))

h

+ PK (x)(xh − λF(t + h, xh))− PK (x)(x − λF(t, x))

h

∥∥∥2

≤
(∥∥∥ PK (xh)(xh − λF(t + h, xh))− PK (x)(xh − λF(t + h, xh))

h

∥∥∥

+
∥∥∥ PK (x)(xh − λF(t + h, xh))− PK (x)(x − λF(t, x))

h

∥∥∥
)2

.

Using inequality (a + b)2 ≤ (1 + η)a2 + (1 + 1
η
)b2, with η > 0 sufficiently small,

hypothesis (d) and the nonexpansivity of projections, we continue the inequality chain as
follows

∥∥∥�x

h

∥∥∥2 ≤ (1 + η)

∥∥∥ PK (xh)(xh − λF(t + h, xh))− PK (x)(xh − λF(t + h, xh))

h

∥∥∥2

+
(

1 + 1

η

)∥∥∥ PK (x)(xh − λF(t + h, xh))− PK (x)(x − λF(t, x))

h

∥∥∥2

≤ (1 + η)κ2
∥∥∥�x

h

∥∥∥2 +
(

1 + 1

η

)∥∥∥�x

h
− λ

F(t + h, xh)− F(t, x)

h

∥∥∥2
. (8)

We now estimate the squared norm appearing in (8)

∥∥∥�x

h
− λ

F(t + h, xh)− F(t, x)

h

∥∥∥2

=
∥∥∥�x

h
− λ

F(t + h, xh)− F(t + h, x)

h
− λ

F(t + h, x)− F(t, x)

h

∥∥∥2

=
∥∥∥�x

h
− λ

F(t + h, xh)− F(t + h, x)

h

∥∥∥2 + λ2
∥∥∥ F(t + h, x)− F(t, x)

h

∥∥∥2

−2λ〈�x

h
, λ

F(t + h, x)− F(t, x)

h
〉

+2λ2〈 F(t + h, xh)− F(t + h, x)

h
,

F(t + h, x)− F(t, x)

h
〉

≤
∥∥∥�x

h

∥∥∥2 + λ2
∥∥∥ F(t + h, xh)− F(t + h, x)

h

∥∥∥2

−2λ〈�x

h
,

F(t + h, xh)− F(t + h, x)

h
〉 + λ2

∥∥∥ F(t + h, x)− F(t, x)

h

∥∥∥2

+2λ
∥∥∥�x

h

∥∥∥ ·
∥∥∥ F(t + h, x)− F(t, x)

h

∥∥∥
+2λ2

∥∥∥ F(t + h, xh)− F(t + h, x)

h

∥∥∥ ·
∥∥∥ F(t + h, x)− F(t, x)

h

∥∥∥.
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Now from (a)–(c) and using twice inequality ab ≤ εa2 + 1
4ε b2, with ε = ε1, ε2 > 0

sufficiently small, we continue the above inequality chain
∥∥∥�x

h
− λ

F(t + h, xh)− F(t, x)

h

∥∥∥2

≤
∥∥∥�x

h

∥∥∥2(
1 + λ2β2 − 2αλ

)
+ λ2 M2‖x‖2

+2λ
(
ε1

∥∥∥�x

h

∥∥∥2 + 1

4ε1

∥∥∥ F(t + h, x)− F(t, x)

h

∥∥∥2)

+2λ2
(
ε2

∥∥∥ F(t + h, xh)− F(t + h, x)

h

∥∥∥2 + 1

4ε2

∥∥∥ F(t + h, x)− F(t, x)

h

∥∥∥2)

≤
∥∥∥�x

h

∥∥∥2(
1 + λ2β2 − 2αλ

)
+ 2

∥∥∥�x

h

∥∥∥2
λ(ε1 + λβ2ε2)

+‖x‖2 M2λ
(
λ+ 1

2ε1
+ λ

2ε2

)
.

Therefore, we have
∥∥∥�x

h

∥∥∥2 ≤
∥∥∥�x

h

∥∥∥2
(
(1 + η)κ2 +

(
1 + 1

η

)(
1 + λ2β2 − 2αλ

)

+2
(

1 + 1

η

)
λ(ε1 + λβ2ε2)

)

+‖x‖2
(

1 + 1

η

)
M2λ

(
λ+ 1

2ε1
+ λ

2ε2

)
.

In conclusion, we get
∥∥∥�x

h

∥∥∥2
(

1 −
(
(1 + η)κ2 +

(
1 + 1

η

)(
1 + λ2β2 − 2αλ

))
− 2

(
1 + 1

η

)
λ(ε1 + λβ2ε2)

)

≤ ‖x‖2
(

1 + 1

η

)
M2λ

(
λ+ 1

2ε1
+ λ

2ε2

)
,

and, choosing λ = α/β2, we obtain

∥∥∥�x

h

∥∥∥2
(

1 −
(
(1 + η)κ2 +

(
1 + 1

η

)(
1 − α2

β2

))
− 2

(
1 + 1

η

) α
β2

(
ε1 + αε2

))

≤ ‖x‖2
(

1 + 1

η

)
M2 α

β2

( α
β2 + 1

2ε1
+ α

2ε2β2

)
.

Now, we observe that

1 −
(
(1 + η)κ2 +

(
1 + 1

η

)(
1 − α2

β2

))
> 0,

if

η ∈
]

−
(κ2 − α2

β2 )+
√
(κ2 + α2

β2 )
2 − 4κ2

2κ2 ,−
(κ2 − α2

β2 )−
√
(κ2 + α2

β2 )
2 − 4κ2

2κ2

[
. (9)

Thus, for sufficiently small values of ε1, ε2 and under condition (9), it results that

c =
(

1 −
(
(1 + η)κ2 +

(
1 + 1

η

)(
1 − α2

β2

))
− 2

(
1 + 1

η

) α
β2

(
ε1 + αε2

))
> 0.
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Hence we obtain ∥∥∥�x

h

∥∥∥2 ≤ c‖x‖2 (10)

with

c = c−1
(

1 + 1

η

)
M2 α

β2

( α
β2 + 1

2ε1
+ α

2ε2β2

)
.

Integrating between t0 − τσ and t0 + τσ , it results that
∥∥∥�x

h

∥∥∥2

L2(B(τσ );Rn)
≤ c‖x‖2

L2(B(τσ );Rn)
.

Thus, we may apply Theorem 1 withγ = c‖x‖2
L2(0,T ;Rn)

and conclude that x ∈ H1(B(σ ); R
n).

As a consequence, x ∈ H1(0, T ; R
n) and for any open set ω ⊂⊂ (0, T ) the estimate

‖x ′‖2
L2(ω;Rn)

≤ γ ‖x‖2
L2(0,T ;Rn)

holds.

Remark 2 Using arguments similar to those applied in [9], it is possible to estimate the
variation rate of projections appearing in assumption (d). Specifically, if map d(t, y(t))
is Lipschiz continuous with respect to y with Lipschitz constant L , a lower bound for the
quantity κ which depends on constant L can be obtained.

Theorem 3 entitles us to reformulate variational inequality problem (4) as the time-dependent
problem (6), and hence, by means of Remark 1, the regularity result holds true for the initial
problem (2).

5 Conclusions

In this paper, we focused on a class of evolutionary quasi-variational inequalities arising in
the study of equilibrium problems in network-based models. By means of projection argu-
ments we were able not only to prove the existence and uniqueness of solutions, but also a
differentiability result as well as some bounds for the norm of the derivative.

Regularity properties have a large spectrum of possible applications as they ensure a better
understanding of solution behavior and make it possible to predict changes during the time
horizon.

Future extensions of the work include the following issues. First, a Volterra integral term
can be introduced in the model so as to express the influence of the past flow distribution
through the network (see [9]). Second, the quasi-variational inequality problem can be refor-
mulated under a different structure of the constraint set and thus adapted to a different network
equilibrium framework.
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